9/x^2-8/x=9/x-2

Simple and best practice solution for 9/x^2-8/x=9/x-2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 9/x^2-8/x=9/x-2 equation:


D( x )

x = 0

x^2 = 0

x = 0

x = 0

x^2 = 0

x^2 = 0

1*x^2 = 0 // : 1

x^2 = 0

x = 0

x in (-oo:0) U (0:+oo)

9/(x^2)-(8/x) = 9/x-2 // - 9/x-2

9/(x^2)-(8/x)-(9/x)+2 = 0

9/(x^2)-8*x^-1-9*x^-1+2 = 0

9*x^-2-17*x^-1+2 = 0

t_1 = x^-1

9*t_1^2-17*t_1^1+2 = 0

9*t_1^2-17*t_1+2 = 0

DELTA = (-17)^2-(2*4*9)

DELTA = 217

DELTA > 0

t_1 = (217^(1/2)+17)/(2*9) or t_1 = (17-217^(1/2))/(2*9)

t_1 = (217^(1/2)+17)/18 or t_1 = (17-217^(1/2))/18

t_1 = (17-217^(1/2))/18

x^-1-((17-217^(1/2))/18) = 0

1*x^-1 = (17-217^(1/2))/18 // : 1

x^-1 = (17-217^(1/2))/18

-1 < 0

1/(x^1) = (17-217^(1/2))/18 // * x^1

1 = ((17-217^(1/2))/18)*x^1 // : (17-217^(1/2))/18

18*(17-217^(1/2))^-1 = x^1

x = 18*(17-217^(1/2))^-1

t_1 = (217^(1/2)+17)/18

x^-1-((217^(1/2)+17)/18) = 0

1*x^-1 = (217^(1/2)+17)/18 // : 1

x^-1 = (217^(1/2)+17)/18

-1 < 0

1/(x^1) = (217^(1/2)+17)/18 // * x^1

1 = ((217^(1/2)+17)/18)*x^1 // : (217^(1/2)+17)/18

18*(217^(1/2)+17)^-1 = x^1

x = 18*(217^(1/2)+17)^-1

x in { 18*(17-217^(1/2))^-1, 18*(217^(1/2)+17)^-1 }

See similar equations:

| W+21/4=55/8 | | 3x/3=(a-1)/3 | | 200=5x-100+2x | | 8k^2+80k=-192 | | 200=5s-100+2s | | a-5/4-4(a-4)/6=5a+25/3 | | x-0.5x=190 | | 8k+80k=-192 | | b^2+22b=-121 | | 1/5(x+7)=1/4(x+2)+1 | | 10+(-15)=-15+a | | 3x/3=(4-1)/3 | | 24x^2-1080x+1584=0 | | 12x+29=3x+245 | | 2x^2+20x+42= | | 115-4x=14x+19 | | 8(x-6)-2(x-3)+3x= | | -(m+15)=-18+(-15) | | 3x+31/7+x+30/6=13 | | x(9-x)+9x=-6 | | 12K-9= | | 3x+3-9x= | | 15=b/15 | | r^2+64=0 | | 11*4=12 | | 12.4+(-2+1.6)= | | 12=5r-14 | | 10n-19=81 | | h=-4t^2+8t+1 | | 0=-(-3)-y | | .18x+0.2(x-3)=0.01(2x-4) | | t-3v/3=h |

Equations solver categories